it-swarm.cn

在共享Web主机上优化基于邻近的存储位置搜索?

我有一个项目,我需要为客户端构建一个商店定位器。

我正在使用自定义帖子类型“restaurant-location”,我编写了代码,使用 Google Geocoding API 对postmeta中存储的地址进行地理编码(以下是 在JSON 中对美国白宫进行地理编码的链接我已将纬度和经度存储回自定义字段。

我写了一个get_posts_by_geo_distance()函数,它返回一个帖子列表,按照地理位置最接近的帖子使用 我在此帖子的幻灯片中找到的公式 。您可以这样调用我的函数(我从一个固定的“源”lat/long开始):

include "wp-load.php";

$source_lat = 30.3935337;
$source_long = -86.4957833;

$results = get_posts_by_geo_distance(
    'restaurant-location',
    'geo_latitude',
    'geo_longitude',
    $source_lat,
    $source_long);

echo '<ul>';
foreach($results as $post) {
    $edit_url = get_edit_url($post->ID);
    echo "<li>{$post->distance}: <a href=\"{$edit_url}\" target=\"_blank\">{$post->location}</a></li>";
}
echo '</ul>';
return;

这是函数get_posts_by_geo_distance()本身:

function get_posts_by_geo_distance($post_type,$lat_key,$lng_key,$source_lat,$source_lng) {
    global $wpdb;
    $sql =<<<SQL
SELECT
    rl.ID,
    rl.post_title AS location,
    ROUND(3956*2*ASIN(SQRT(POWER(SIN(({$source_lat}-abs(lat.lat))*pi()/180/2),2)+
    COS({$source_lat}*pi()/180)*COS(abs(lat.lat)*pi()/180)*
    POWER(SIN(({$source_lng}-lng.lng)*pi()/180/2),2))),3) AS distance
FROM
    wp_posts rl
    INNER JOIN (SELECT post_id,CAST(meta_value AS DECIMAL(11,7)) AS lat FROM wp_postmeta lat WHERE lat.meta_key='{$lat_key}') lat ON lat.post_id = rl.ID
    INNER JOIN (SELECT post_id,CAST(meta_value AS DECIMAL(11,7)) AS lng FROM wp_postmeta lng WHERE lng.meta_key='{$lng_key}') lng ON lng.post_id = rl.ID
WHERE
    rl.post_type='{$post_type}' AND rl.post_name<>'auto-draft'
ORDER BY
    distance
SQL;
    $sql = $wpdb->prepare($sql,$source_lat,$source_lat,$source_lng);
    return $wpdb->get_results($sql);
}

我担心的是SQL就像你可以得到的那样非优化。 MySQL无法通过任何可用的索引进行排序,因为源geo是可更改的,并且没有一组有限的源地理要缓存。目前我对如何优化它感到困惑。

考虑到我已经完成的问题是: 你将如何优化这个用例?

如果一个更好的解决方案让我把它扔掉,那么我保留我所做的一切并不重要。 我愿意考虑几乎任何解决方案除了需要做一些事情,比如安装Sphinx服务器或任何需要定制MySQL配置的东西。基本上,该解决方案需要能够在任何普通的Vanilla WordPress安装上运行。 (也就是说,如果有人想为可能能够获得更高级和后代的其他人列出替代解决方案,那将会很棒。)

资源找到

仅供参考,我对此进行了一些研究,而不是让你再次进行研究,或者不是将这些链接作为答案发布,我将继续并包含它们。

关于狮身人面像搜索

11
MikeSchinkel

你需要什么精度?如果它是一个州/全国范围的搜索,也许你可以做一个lat-lon到Zip查找,并预先计算从Zip区域到餐厅的Zip区域的距离。如果您需要准确的距离,那将不是一个好选择。

您应该查看 Geohash 解决方案,在维基百科文章中有一个链接到PHP库,用于将解码lat long编码为geohash。

在这里你有 一篇好文章 解释他们为什么以及如何在Google App Engine中使用它(Python代码但很容易理解。)因为需要在GAE中使用geohash你可以找到一些好的python库和示例。

作为 这篇博客文章 解释,使用geohashes的优点是你可以在该字段的MySQL表上创建索引。

6
user324

这对你来说可能为时已晚,但无论如何我都会回复, 与我对这个相关问题给出的类似答案 ,所以未来的访问者可以参考这两个问题。

我不会将这些值存储在后元数据表中,或者至少不存在 only 那里。您需要一个包含post_idlatlon列的表,因此您可以放置​​lat, lon的索引并对其进行查询。这不应该太难以保持更新帖子保存和更新的钩子。

查询数据库时,在起始点周围定义一个 边界框 ,这样就可以对框的南北和东西边界之间的所有lat, lon对进行有效查询。

在获得此缩小结果后,您可以进行更高级(圆形或实际行驶方向)距离计算,以过滤掉边界框角落中的位置,从而远离您想要的距离。

在这里,您可以找到一个在管理区域中工作的简单代码示例。您需要自己创建额外的数据库表。代码从大多数到最不感兴趣的排序。

<?php
/*
Plugin Name: Monkeyman geo test
Plugin URI: http://www.monkeyman.be
Description: Geolocation test
Version: 1.0
Author: Jan Fabry
*/

class Monkeyman_Geo
{
    public function __construct()
    {
        add_action('init', array(&$this, 'registerPostType'));
        add_action('save_post', array(&$this, 'saveLatLon'), 10, 2);

        add_action('admin_menu', array(&$this, 'addAdminPages'));
    }

    /**
     * On post save, save the metadata in our special table
     * (post_id INT, lat DECIMAL(10,5), lon DECIMAL (10,5))
     * Index on lat, lon
     */
    public function saveLatLon($post_id, $post)
    {
        if ($post->post_type != 'monkeyman_geo') {
            return;
        }
        $lat = floatval(get_post_meta($post_id, 'lat', true));
        $lon = floatval(get_post_meta($post_id, 'lon', true));

        global $wpdb;
        $result = $wpdb->replace(
            $wpdb->prefix . 'monkeyman_geo',
            array(
                'post_id' => $post_id,
                'lat' => $lat,
                'lon' => $lon,
            ),
            array('%s', '%F', '%F')
        );
    }

    public function addAdminPages()
    {
        add_management_page( 'Quick location generator', 'Quick generator', 'edit_posts', __FILE__  . 'generator', array($this, 'doGeneratorPage'));
        add_management_page( 'Location test', 'Location test', 'edit_posts', __FILE__ . 'test', array($this, 'doTestPage'));

    }

    /**
     * Simple test page with a location and a distance
     */
    public function doTestPage()
    {
        if (!array_key_exists('search', $_REQUEST)) {
            $default_lat = ini_get('date.default_latitude');
            $default_lon = ini_get('date.default_longitude');

            echo <<<EOF
<form action="" method="post">
    <p>Center latitude: <input size="10" name="center_lat" value="{$default_lat}"/>
        <br/>Center longitude: <input size="10" name="center_lon" value="{$default_lon}"/>
        <br/>Max distance (km): <input size="5" name="max_distance" value="100"/></p>
    <p><input type="submit" name="search" value="Search!"/></p>
</form>
EOF;
            return;
        }
        $center_lon = floatval($_REQUEST['center_lon']);
        $center_lat = floatval($_REQUEST['center_lat']);
        $max_distance = floatval($_REQUEST['max_distance']);

        var_dump(self::getPostsUntilDistanceKm($center_lon, $center_lat, $max_distance));
    }

    /**
     * Get all posts that are closer than the given distance to the given location
     */
    public static function getPostsUntilDistanceKm($center_lon, $center_lat, $max_distance)
    {
        list($north_lat, $east_lon, $south_lat, $west_lon) = self::getBoundingBox($center_lat, $center_lon, $max_distance);

        $geo_posts = self::getPostsInBoundingBox($north_lat, $east_lon, $south_lat, $west_lon);

        $close_posts = array();
        foreach ($geo_posts as $geo_post) {
            $post_lat = floatval($geo_post->lat);
            $post_lon = floatval($geo_post->lon);
            $post_distance = self::calculateDistanceKm($center_lat, $center_lon, $post_lat, $post_lon);
            if ($post_distance < $max_distance) {
                $close_posts[$geo_post->post_id] = $post_distance;
            }
        }
        return $close_posts;
    }

    /**
     * Select all posts ids in a given bounding box
     */
    public static function getPostsInBoundingBox($north_lat, $east_lon, $south_lat, $west_lon)
    {
        global $wpdb;
        $sql = $wpdb->prepare('SELECT post_id, lat, lon FROM ' . $wpdb->prefix . 'monkeyman_geo WHERE lat < %F AND lat > %F AND lon < %F AND lon > %F', array($north_lat, $south_lat, $west_lon, $east_lon));
        return $wpdb->get_results($sql, OBJECT_K);
    }

    /* Geographical calculations: distance and bounding box */

    /**
     * Calculate the distance between two coordinates
     * http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates/1416950#1416950
     */
    public static function calculateDistanceKm($a_lat, $a_lon, $b_lat, $b_lon)
    {
        $d_lon = deg2rad($b_lon - $a_lon);
        $d_lat = deg2rad($b_lat - $a_lat);
        $a = pow(sin($d_lat/2.0), 2) + cos(deg2rad($a_lat)) * cos(deg2rad($b_lat)) * pow(sin($d_lon/2.0), 2);
        $c = 2 * atan2(sqrt($a), sqrt(1-$a));
        $d = 6367 * $c;

        return $d;
    }

    /**
     * Create a box around a given point that extends a certain distance in each direction
     * http://www.colorado.edu/geography/gcraft/warmup/aquifer/html/distance.html
     *
     * @todo: Mind the gap at 180 degrees!
     */
    public static function getBoundingBox($center_lat, $center_lon, $distance_km)
    {
        $one_lat_deg_in_km = 111.321543; // Fixed
        $one_lon_deg_in_km = cos(deg2rad($center_lat)) * 111.321543; // Depends on latitude

        $north_lat = $center_lat + ($distance_km / $one_lat_deg_in_km);
        $south_lat = $center_lat - ($distance_km / $one_lat_deg_in_km);

        $east_lon = $center_lon - ($distance_km / $one_lon_deg_in_km);
        $west_lon = $center_lon + ($distance_km / $one_lon_deg_in_km);

        return array($north_lat, $east_lon, $south_lat, $west_lon);
    }

    /* Below this it's not interesting anymore */

    /**
     * Generate some test data
     */
    public function doGeneratorPage()
    {
        if (!array_key_exists('generate', $_REQUEST)) {
            $default_lat = ini_get('date.default_latitude');
            $default_lon = ini_get('date.default_longitude');

            echo <<<EOF
<form action="" method="post">
    <p>Number of posts: <input size="5" name="post_count" value="10"/></p>
    <p>Center latitude: <input size="10" name="center_lat" value="{$default_lat}"/>
        <br/>Center longitude: <input size="10" name="center_lon" value="{$default_lon}"/>
        <br/>Max distance (km): <input size="5" name="max_distance" value="100"/></p>
    <p><input type="submit" name="generate" value="Generate!"/></p>
</form>
EOF;
            return;
        }
        $post_count = intval($_REQUEST['post_count']);
        $center_lon = floatval($_REQUEST['center_lon']);
        $center_lat = floatval($_REQUEST['center_lat']);
        $max_distance = floatval($_REQUEST['max_distance']);

        list($north_lat, $east_lon, $south_lat, $west_lon) = self::getBoundingBox($center_lat, $center_lon, $max_distance);


        add_action('save_post', array(&$this, 'setPostLatLon'), 5);
        $precision = 100000;
        for ($p = 0; $p < $post_count; $p++) {
            self::$currentRandomLat = mt_Rand($south_lat * $precision, $north_lat * $precision) / $precision;
            self::$currentRandomLon = mt_Rand($west_lon * $precision, $east_lon * $precision) / $precision;

            $location = sprintf('(%F, %F)', self::$currentRandomLat, self::$currentRandomLon);

            $post_data = array(
                'post_status' => 'publish',
                'post_type' => 'monkeyman_geo',
                'post_content' => 'Point at ' . $location,
                'post_title' => 'Point at ' . $location,
            );

            var_dump(wp_insert_post($post_data));
        }
    }

    public static $currentRandomLat = null;
    public static $currentRandomLon = null;

    /**
     * Because I didn't know how to save meta data with wp_insert_post,
     * I do it here
     */
    public function setPostLatLon($post_id)
    {
        add_post_meta($post_id, 'lat', self::$currentRandomLat);
        add_post_meta($post_id, 'lon', self::$currentRandomLon);
    }

    /**
     * Register a simple post type for us
     */
    public function registerPostType()
    {
        register_post_type(
            'monkeyman_geo',
            array(
                'label' => 'Geo Location',
                'labels' => array(
                    'name' => 'Geo Locations',
                    'singular_name' => 'Geo Location',
                    'add_new' => 'Add new',
                    'add_new_item' => 'Add new location',
                    'edit_item' => 'Edit location',
                    'new_item' => 'New location',
                    'view_item' => 'View location',
                    'search_items' => 'Search locations',
                    'not_found' => 'No locations found',
                    'not_found_in_trash' => 'No locations found in trash',
                    'parent_item_colon' => null,
                ),
                'description' => 'Geographical locations',
                'public' => true,
                'exclude_from_search' => false,
                'publicly_queryable' => true,
                'show_ui' => true,
                'menu_position' => null,
                'menu_icon' => null,
                'capability_type' => 'post',
                'capabilities' => array(),
                'hierarchical' => false,
                'supports' => array(
                    'title',
                    'editor',
                    'custom-fields',
                ),
                'register_meta_box_cb' => null,
                'taxonomies' => array(),
                'permalink_epmask' => EP_PERMALINK,
                'rewrite' => array(
                    'slug' => 'locations',
                ),
                'query_var' => true,
                'can_export' => true,
                'show_in_nav_menus' => true,
            )
        );
    }
}

$monkeyman_Geo_instance = new Monkeyman_Geo();
9
Jan Fabry

我在这一方上迟到了,但回头看看,get_post_meta在这里确实是问题,而不是你正在使用的SQL查询。

我最近不得不在我运行的网站上进行类似的地理查找,而不是使用元表来存储lat和lon(最多需要两个连接来查找,如果你使用的是get_post_meta,则需要另外两个数据库每个位置的查询),我创建了一个具有空间索引几何POINT数据类型的新表。

我的查询看起来很像你的查询,MySQL做了很多繁重的工作(我省略了trig函数并将所有内容简化为二维空间,因为它足够接近我的目的):

function nearby_property_listings( $number = 5 ) {
    global $client_location, $wpdb;

    //sanitize public inputs
    $lat = (float)$client_location['lat'];  
    $lon = (float)$client_location['lon']; 

    $sql = $wpdb->prepare( "SELECT *, ROUND( SQRT( ( ( ( Y(geolocation) - $lat) * 
                                                       ( Y(geolocation) - $lat) ) *
                                                         69.1 * 69.1) +
                                                  ( ( X(geolocation) - $lon ) * 
                                                       ( X(geolocation) - $lon ) * 
                                                         53 * 53 ) ) ) as distance
                            FROM {$wpdb->properties}
                            ORDER BY distance LIMIT %d", $number );

    return $wpdb->get_results( $sql );
}

其中$ client_location是公共地理IP查找服务返回的值(我使用geoio.com,但有许多类似的。)

它可能看起来很笨拙,但在测试中,它始终以低于.4秒的速度从80,000行表中返回最近的5个位置。

在MySQL推出正在提出的DISTANCE函数之前,这似乎是我发现实现位置查找的最佳方式。

编辑: 添加此特定表的表结构。它是一组属性列表,因此它可能与任何其他用例相似或不同。

CREATE TABLE IF NOT EXISTS `rh_properties` (
  `listingId` int(10) unsigned NOT NULL,
  `listingType` varchar(60) collate utf8_unicode_ci NOT NULL,
  `propertyType` varchar(60) collate utf8_unicode_ci NOT NULL,
  `status` varchar(20) collate utf8_unicode_ci NOT NULL,
  `street` varchar(64) collate utf8_unicode_ci NOT NULL,
  `city` varchar(24) collate utf8_unicode_ci NOT NULL,
  `state` varchar(5) collate utf8_unicode_ci NOT NULL,
  `Zip` decimal(5,0) unsigned zerofill NOT NULL,
  `geolocation` point NOT NULL,
  `county` varchar(64) collate utf8_unicode_ci NOT NULL,
  `bedrooms` decimal(3,2) unsigned NOT NULL,
  `bathrooms` decimal(3,2) unsigned NOT NULL,
  `price` mediumint(8) unsigned NOT NULL,
  `image_url` varchar(255) collate utf8_unicode_ci NOT NULL,
  `description` mediumtext collate utf8_unicode_ci NOT NULL,
  `link` varchar(255) collate utf8_unicode_ci NOT NULL,
  PRIMARY KEY  (`listingId`),
  KEY `geolocation` (`geolocation`(25))
)

geolocation列是唯一与此相关的内容;它由x(lon),y(lat)坐标组成,我只是在将新值导入数据库时​​从地址中查找。

1
goldenapples

只需预先计算所有实体之间的距离。我会将它存储到自己的数据库表中,并能够索引值。

0
hakre